Benchmark

This small benchmark compares the performance of the base64 encoding/decoding in package base64url with the implementations in the packages base64enc and openssl.

Encoding of a single string

library(base64url)
library(base64enc)
library(openssl)
## Linking to: OpenSSL 3.0.13 30 Jan 2024
library(microbenchmark)

x = "plain text"
microbenchmark(
  base64url = base64_urlencode(x),
  base64enc = base64encode(charToRaw(x)),
  openssl = base64_encode(x)
)
## Unit: nanoseconds
##       expr   min    lq     mean median      uq    max neval
##  base64url   571   721  1079.51    792   886.5  28854   100
##  base64enc  1523  1929  3825.52   2064  2230.0 176960   100
##    openssl 13766 14843 17823.53  16571 16921.5 156101   100

Decoding of a single string

x = "N0JBLlRaUTp1bi5KOW4xWStNWEJoLHRQaDZ3"
microbenchmark(
  base64url = base64_urldecode(x),
  base64enc = rawToChar(base64decode(x)),
  openssl = rawToChar(base64_decode(x))
)
## Unit: nanoseconds
##       expr   min    lq     mean  median      uq    max neval
##  base64url   581   641   997.89   781.5   922.0  21751   100
##  base64enc  1943  2344  3567.61  2550.0  2800.5 101610   100
##    openssl 21200 21936 24566.18 22662.5 23584.0 139240   100

Encoding and decoding of character vectors

Here, the task has changed from encoding/decoding a single string to processing multiple strings stored inside a character vector. First, we create a small utility function which returns n random strings with a random number of characters (between 1 and 32) each.

rand = function(n, min = 1, max = 32) {
  chars = c(letters, LETTERS, as.character(0:9), c(".", ":", ",", "+", "-", "*", "/"))
  replicate(n, paste0(sample(chars, sample(min:max, 1), replace = TRUE), collapse = ""))
}
set.seed(1)
rand(10)
##  [1] "*MaHQn6Yu1gKKHRGIPLtBtRNR"       "MYPfxFnbSrv,mNVwCmvBVGSuE"      
##  [3] "qV:7YH"                          "aQ6zo5CxPV"                     
##  [5] "Mx0NIQaCvBK8T-YRW73WX"           "gtxY0pbV,R+sqHEITspNiXx"        
##  [7] "FMKlnpob,-"                      "qeOEJWOC:a040XDbJNK3AOo4"       
##  [9] "9fdI4y"                          "KB9tCP7,BElRzGd0xKon03XtbcLoB2/"

Only base64url is vectorized for string input, the alternative implementations need wrappers to process character vectors:

base64enc_encode = function(x) {
  vapply(x, function(x) base64encode(charToRaw(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_encode = function(x) {
  vapply(x, function(x) base64_encode(x), NA_character_, USE.NAMES = FALSE)
}

base64enc_decode = function(x) {
  vapply(x, function(x) rawToChar(base64decode(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_decode = function(x) {
  vapply(x, function(x) rawToChar(base64_decode(x)), NA_character_, USE.NAMES = FALSE)
}

The following benchmark measures the runtime to encode 1000 random strings and then decode them again:

set.seed(1)
x = rand(1000)
microbenchmark(
  base64url = base64_urldecode(base64_urlencode(x)),
  base64enc = base64enc_decode(base64enc_encode(x)),
  openssl = openssl_decode(openssl_encode(x))
)
## Unit: microseconds
##       expr       min        lq       mean    median        uq       max neval
##  base64url   205.704   220.011   249.9535   240.183   257.005   503.520   100
##  base64enc  4807.774  4928.620  5418.9868  5024.062  5233.819  8692.104   100
##    openssl 37195.558 39137.618 40205.2051 39753.532 40445.504 84418.321   100