Benchmark

This small benchmark compares the performance of the base64 encoding/decoding in package base64url with the implementations in the packages base64enc and openssl.

Encoding of a single string

library(base64url)
library(base64enc)
library(openssl)
## Linking to: OpenSSL 3.0.13 30 Jan 2024
library(microbenchmark)

x = "plain text"
microbenchmark(
  base64url = base64_urlencode(x),
  base64enc = base64encode(charToRaw(x)),
  openssl = base64_encode(x)
)
## Unit: nanoseconds
##       expr   min      lq     mean  median    uq    max neval
##  base64url   541   601.0   894.78   711.5   801  19406   100
##  base64enc  1503  1653.5  3629.49  1884.0  2034 176358   100
##    openssl 13966 14466.0 16291.84 14757.5 15214 144700   100

Decoding of a single string

x = "N0JBLlRaUTp1bi5KOW4xWStNWEJoLHRQaDZ3"
microbenchmark(
  base64url = base64_urldecode(x),
  base64enc = rawToChar(base64decode(x)),
  openssl = rawToChar(base64_decode(x))
)
## Unit: nanoseconds
##       expr   min    lq     mean median      uq    max neval
##  base64url   561   631   953.77    782   867.0  19276   100
##  base64enc  1893  2104  3068.45   2414  2644.5  69329   100
##    openssl 20959 21700 24043.87  22096 22577.0 155160   100

Encoding and decoding of character vectors

Here, the task has changed from encoding/decoding a single string to processing multiple strings stored inside a character vector. First, we create a small utility function which returns n random strings with a random number of characters (between 1 and 32) each.

rand = function(n, min = 1, max = 32) {
  chars = c(letters, LETTERS, as.character(0:9), c(".", ":", ",", "+", "-", "*", "/"))
  replicate(n, paste0(sample(chars, sample(min:max, 1), replace = TRUE), collapse = ""))
}
set.seed(1)
rand(10)
##  [1] "*MaHQn6Yu1gKKHRGIPLtBtRNR"       "MYPfxFnbSrv,mNVwCmvBVGSuE"      
##  [3] "qV:7YH"                          "aQ6zo5CxPV"                     
##  [5] "Mx0NIQaCvBK8T-YRW73WX"           "gtxY0pbV,R+sqHEITspNiXx"        
##  [7] "FMKlnpob,-"                      "qeOEJWOC:a040XDbJNK3AOo4"       
##  [9] "9fdI4y"                          "KB9tCP7,BElRzGd0xKon03XtbcLoB2/"

Only base64url is vectorized for string input, the alternative implementations need wrappers to process character vectors:

base64enc_encode = function(x) {
  vapply(x, function(x) base64encode(charToRaw(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_encode = function(x) {
  vapply(x, function(x) base64_encode(x), NA_character_, USE.NAMES = FALSE)
}

base64enc_decode = function(x) {
  vapply(x, function(x) rawToChar(base64decode(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_decode = function(x) {
  vapply(x, function(x) rawToChar(base64_decode(x)), NA_character_, USE.NAMES = FALSE)
}

The following benchmark measures the runtime to encode 1000 random strings and then decode them again:

set.seed(1)
x = rand(1000)
microbenchmark(
  base64url = base64_urldecode(base64_urlencode(x)),
  base64enc = base64enc_decode(base64enc_encode(x)),
  openssl = openssl_decode(openssl_encode(x))
)
## Unit: microseconds
##       expr       min         lq       mean     median        uq       max neval
##  base64url   204.491   217.4445   236.7282   233.8255   242.126   527.182   100
##  base64enc  4690.610  4779.0140  5543.2551  4850.9335  4958.293 44182.261   100
##    openssl 37450.427 38567.2045 38982.0700 38867.8290 39229.728 43197.516   100